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Abstract 

The article deals with the kernel estimation of the probability density function. The main subject of the research is
the optimization of parameters of the estimator. In the particular case, the research focused on the estimation of the 
univariate, unimodal data representative for the normal distribution. 
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1. Introduction 

 
The probability density function (PDF) depicts the structure of the statistical population 

and characterizes the distribution of the random variable [1]. It enables the construction and 
verification of the statistical models which are essential for data analysis and measurements. 
Its multimodality and boundary values associated with the tails are indispensable for the 
identification of the structure of the measuring data.  

The probability density function for a one-dimensional case is defined by equation 
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and indicates the probability of the value X from a particular interval ],[ ba . 
In multivariate data analysis, the determination of probability for every n-dimensional 

vector enables the calculation of probability for any event in the multidimensional space.  
There are two methods of t probability density estimation: 
− parametric, 
− non-parametric. 
In parametric statistics it is assumed that variable is derived from a specific probability 

distribution for which distribution parameters are calculated. The limited number of known 
and described distributions is the main drawback of the parametric inference. 

Non-parametric methods do not require any assumptions concerning the distribution of the 
random variable. Therefore, these methods are commonly applied in case of no a priori 
information about the random variable distribution or when there is no possibility of modeling 
the density by any standard distribution.  

The main reason for the development of the non-parametric methods was the need for 
complex probabilistic models and the increase of computer processing power. More recent 
work [2,3,4] indicates that PDF can be a useful tool in transient detection in the measured 
signals or in picture recognition. 



Statistical inference deals with the characteristic features of a population by estimating its 
values or a function from the data derived from a random sample.  Estimators are therefore an 
approximation of the values or of a function [1]. 

Among the non-parametric methods of estimating the probability density function the 
following may be distinguished: histogram, naive estimator, kernel density estimator, nearest-
neighbor estimator, Fourier estimator. 

The theoretical backgrounds of PDF estimation are widely discussed in literature [1,5,6,7]. 
This paper deals with the kernel estimation and its main goal is to present some simulation 
results of kernel density estimation. The presented results of numerical experiments are 
addressed to users who face the problem of the kernel function choice and the adjustment of 
its parameters. We study the accuracy of various methods of kernel density estimation and try 
to focus our attention on the optimization of the quality of the kernel estimation, their 
parameters and the numerical complexity. 

The organization of this paper is as follows. Section 2 introduces the definition and most 
important properties of the kernel estimation. Reviews briefly the main roles of construction 
of effective kernel estimators. In Section 3 we draw experimental performance evaluations of 
PDF models in order to indicate the advantages and limitations of various kernels and the 
methods of choosing the smoothing parameter. Section 4 contains the concluding remarks. 

 
2. Kernel estimation 

 
A kernel density estimate comes from the preceding methods of estimation: histogram and 

naive estimator. The histogram is the simplest density estimator, where given an origin x and 
a bin width h , the bins of the histograms kH  are defined as the intervals 

( )[ )hmxmhx 1, +++ . Thus, the histogram is defined by [1] 
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where # denotes the number of ki Hx ∈ . 
Figure 1 shows histograms of the same random variable x for different bin widths h .  

When the value of parameter h  is too big, the characteristic features of the density are lost. 
On the contrary, a small value of h  results in the exposition of too many details what blurs 
the density picture (two modes). What is more, the choice of origin of the first bin has  
a significant impact on the quality of the histogram.   

The naive estimator is void of this drawback. The histogram is constructed under the 
assumption that every value of the random variable is the origin of a new bin. The naive 
estimator function is discontinuous, it has a zero derivative in all points except hX i ±  and is 
defined by 
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where ( )
2
1

=xw , when  1<x or  ( ) 0=xw in other cases [1]. 
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Fig. 1. Histograms of the probability density function. 

 
In kernel density estimators the weight function ( )xw  is replaced by the kernel function K  

which satisfies the following conditions [5]: 

1. ( )∫
∞

∞−

= 1dxxK .         

2. Is symmetrical function, i.e. 
     ( ) ( )xKxK −=  for every ℜ∈x .                        
3. Has maximum for x=0, i.e. 

 

( ) ( )xKK ≥0  for every ℜ∈x .                    

For random sample mXXX ,...,, 21  the kernel estimator )(ˆ xf for every ℜ∈x  is defined by 
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where h  is the smoothing parameter or bandwidth - equivalent to the bin width in case of 
histograms. The choice criteria for this parameter are similar to those of histograms. 

The kernel density estimate can be interpreted as the  sum of single estimates, hence the 

sum of successive kernel functions K shifted by a vector iX  and scaled by the factor 
mh
1 . 

Moreover, ( )xf̂ satisfies the conditions of integrality and differentiability, which are imposed 



on the kernel function K . Most applications exploit the non-negative, symmetrical due to 
zero kernel which has its maximum there, usually it is the normal density kernel [5]. 
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Fig. 2. An examples of the estimate of the probability density function (solid curve) constructed with the 

kernel estimators (dotted curves). 
 
The concept of kernel estimation is presented in Fig. 2, for the m -element random sample 

with values iX = [-2; -1,5; 0; 0; 1; 2]. In this example the estimate was constructed with the 
normal kernels. Fig. 2 is the graphical interpretation of (4). The appropriate choice of the 
bandwidth, hence the shape of the kernel, will have the fundamental significance for the 
quality of the density estimate. 

The quality of the estimate is determined by two factors: smoothing parameter h and 
kernel function K . 

A criterion of estimation of the kernel estimate quality is the bias estimator defined as  
the difference between the expected value of estimators and the “true” values of the estimated 
parameter 

 

( ) ffE −ˆ .      (5) 
 
Zero value of the bias, thus the case when the estimator is unbiased, means that the 

estimated values fluctuate between the “true” values of the distribution and that the estimator 
has no tendency to over- or underestimate. In practice, the estimated values oscillate between 
true values, while the variance ( )fVAR ˆ  is the indicator of these oscillations. The estimator is 
consistent if 
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and asymptotically unbiased if 
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The analysis of bias is the basis for two criteria of evaluation of the estimate quality: Mean 

Squared Error (MSE) and Mean Integrated Squared Error (MISE). 
MSE is defined by 
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Mean squared error enables the evaluation of the difference between the mean value of the 
estimator and the true values, whereas the variance determines the measure of spread of the 
estimated values with respect to the mean value. 

MISE is a global indicator of the estimate quality not only for a given x  as in the case of 
MSE.  MISE is defined as the integral of MSE (in the nℜ space): 

 

( ) ( )( ) dxxfxfEMISE
n
∫

ℜ

−=
2ˆ     (10) 

or 
( )( ) ( )[ ] ( )( )dxxfVARxfxfEMISE

n
∫

ℜ

+−= ˆˆ 2
. (11) 

 
The bias of the kernel estimator after extension into a Taylor series for the given x  is 

defined by 
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while the variance has the form 
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where o(h) and o(1/mh) represent the infinitely small higher-order terms of h and (1/mh), 
respectively. 

The following terms can be inserted in order to simplify the notation [5] 
 

( )∫
∞

∞−

= dxxKxKU 2)( .     (14) 

( )∫
∞

∞−

= dxxKKW 2)( .     (15) 

( )∫
∞

∞−

′′= dxxffZ 2)( .     (16) 

 
Insertion of (14), (15) and (16) into (12) gives the mean integrated square error of the 

form: 
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The expression (17) implies that the smaller value of the smoothing parameter (which 

gives amore sharpened structure of the data) results in the decrease of the bias at the same 
time leading to the increase of the estimator’s variance. Increasing the values of h causes the 



opposite effect. The main issue concerning the choice of the bandwidth is finding the optimal 
value that is a compromise between the bias and the variance. 
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Fig. 3. An example of kernel density estimates with different bandwidths: a) h=0,1; b) h=0,8; c) h=0,4. 

 
This optimal value minimizing the MISE criterion is defined as follows [5] 
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This expression implies that the optimal value depends on the unknown density-

( )∫
∞

∞−

′′= dxxffZ 2)( , and that the optimal bandwidth tends to zero as the sample size 

increases. Secondly, the term )( fZ describing the rate of change of the probability density 
indicates that the small value of h  should be adopted in the multimodal distributions. Due to 
the unknown factor f  this expression cannot however be applied. The natural conception 
would lead to the conclusion that the term )( fZ  is determined by the arbitrary assumption 
regarding one of the standard distributions. In most cases it is a normal distribution. 
 
2.1. Methods of optimal bandwidth determination  

 
We may distinguish between three general methods for the determination of the optimal 

bandwidth: approximate, plug-in and cross-validation methods. 
The approximate method assumes that )( fZ complies with the normal distribution. 

Denoting the variance of normal distribution as 2σ , )( fZ has the form [5] 
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If the normal kernel function is applied, then the optimal bandwidth is 
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The above expression is known as the Silverman method of Rule of Thumb – ROT [1]. 

Unfortunately, for the multimodal distributions which are the general object of the kernel 
density estimation, too large overestimation results in covering of the characteristic features of 
the distribution. In practice, it is applied initially to obtain the approximate value of the 
probability distribution function. 

Plug-in methods consist of iterative determination of the function value )( fZ . Firstly, due 
to the presence of the second derivative of the probability density function f ′′  in the above 
expression, the bandwidth of the estimator of the k-order derivative of the density function 
should be calculated using the approximate method. In order to determine the bandwidth of 
function f , the smoothing parameters for ( )22 −kf , ( )42 −kf  and up to f ′′ are calculated. The 
accuracy of this method depends on the number of steps k. In practice two steps are sufficient 
[8]. The study applies a representative plug-in method proposed by Hall, Sheather, Jones and 
Marron in [9]. 

Cross-validation methods are based on the concept of minimizing MISE. They belong to 
the so-called classical methods that are used in parametric modeling. The smoothing 
parameter h  for the m-element sample size is determined on the basis of the function estimate 
obtained for the 1−m  observations [5].  

This is a very accurate method due to the minimization of MISE, however the tendency for 
underestimation may occur resulting in too many local extremes. On the other hand, plug-in 
methods are characterized by good smoothing properties of the density estimate. Therefore, 
the choice of the bandwidth selection method depends on its intended application [7,8]. 

Additionally, the estimators may be optimized with reference to the “local” density of the 
data. An example of such optimization is the local version of the cross-validation method 
where the nearest neighbor method is adapted to control the amount of smoothing. In effect, 
the value of the bandwidth is not constant and varies in accordance to the density of 
distribution [1].   
 
2.2. Choice of the kernel function 
 

The second factor affecting the quality of the estimation is the choice of kernel. The 
analysis of the formula (17) proves that after substituting the value of the optimal smoothing 
parameter (18), the mean square error is calculated as follows 
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where the coefficient )(KC is defined by 
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The coefficient )(KC characterizes the kernel function K  of the estimator. The kernels 

with small value of this coefficient should be chosen since it leads to the minimization of 
MISE for the given optimal bandwidth opth . 



 
Table 1. Basic kernel functions and their efficiency [5]. 
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The kernel that minimizes )(KC  is the Epanachnikov function defined as follows [1] 
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The other kernel functions are suboptimal in comparison to the Epanachnikov function. 

Their efficiency is determined as follows [5] 
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For a large sample size the mean squared error is the same for m observations using any 

kernel functions and for a sample size of efm ⋅  using the Epanachnikov kernel. 
On the basis of the MISE criterion, the optimal choice is the Epanachnikov kernel if the 

quality of the estimate is taken into consideration. However, it has to be noticed that the 
differences between the efficiency of various kernels are insignificant. In practice, the values 
from Table 1 respond to the increase in the sample size for other kernel functions in order to 
achieve inaccuracy corresponding to the estimate achieved using the Epanachnikov kernel. 

 
3. Results of simulation analysis 

 
3.1. Statistics 

 
The simulation studies concentrated on the examination of the influence of the type of 

kernel and the bandwidth on the quality of the estimation. The aim of the research was the 
assessment of conformity between the curves representing the kernel estimator and the one-
dimensional normal distribution. The following indicators of the curve fitting were applied: 
− the mean square error 
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where 

− xi
n - the value of the ordinate of the one-dimensional normal distribution in point i, 

− xi
e - the value of the ordinate of the kernel estimator in point i, 

− the variance (it characterizes the spread of the difference between the theoretical and the 
estimated curve) 
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− the mean square error of the censored distribution on t-level 
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−  the censored variance on t-level 
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where 

N1, N2 – left and right limits of the one-dimensional normal distribution curve and the 
kernel estimator on the threshold value t. 

 
Fig. 4. Graphical interpretation of the censored distribution parameters 

 
The censored mean square error as well as the censored variance enable the assessment of 

the distribution conformity for small values of the random variable. At a certain level t, the 
amount of spread of the values of the kernel estimator with reference to the normal 



distribution curve is calculated for the interval limited by the ordinates of the normal 
distribution curve (Fig. 4). The use of these statistics is justified by the fact that the measure 
of curves fitting is dependent on the conformity for small values of the random variable. 
Equations (25) and (26) relate to the whole range of values of the random variable. Hence the 
results are biased by the curves accordance for large values of the random variable. 

 
3.2. Results of simulations 

 
The results of the research can be divided into three groups. The first two focus on the 

influence of the method of choosing the smoothing parameter and the length of the sample 
size on the quality of estimation. The last one presents the time consumption of the estimation 
algorithms.   

The research was conducted on pseudorandom samples of the standardized normal 
distribution. 

The impact of the bandwidth choosing method was carried for the samples of length 1024 
using four methods described in part 2.1: 

− approximate method (ROT), 
− likelihood cross-validation method (LCV), 
− plug-in method (HSJM), 
− optimized method LCV (LOCAL) 

Figure 5 presents the results of the kernel estimation for the Epanachnikov kernel, the 
corresponding statistics are included in Table 2. The results for the Gauss kernel are shown in 
Fig. 6 and in Table 3. The distribution curves representing the results for the Laplace kernel 
are depicted in Fig. 7 and Table 4 contains the corresponding statistic results.  

The analysis of the curves depicted in the Fig. 5-7 and the results of the kernel estimations 
included in Tables 2-4 indicate that the best quality of estimation is obtained for methods 
LCV and ROT, independently of the chosen kernel. Estimates using the optimized LCV 
method (LOCAL) lead to the exposure of too many details, which does not mirror the true 
character of the distribution. It may be concluded that the LCV (LOCAL) method as well as 
the HSJM would be more suitable for estimates of the non-standard distributions, especially 
multimodal.     

The impact of the sample size on the quality of estimation was analyzed for the three types 
of kernels using the LCV method for choosing the value of the bandwidth. The simulation 
results are shown in Fig. 8-10. According to expectations, the increase of the sample size 
leads to the minimization of the mean square error and the variance. It should be stated that a 
sample size larger than 1024 does not improve the quality of the estimation. Knowledge of the 
results for small sample sizes is crucial for the construction of the real-time classification 
algorithms for the multivariate data [2].  

The evaluation of the time consumption of the procedures was realized for the two 
methods: ROT and LCV for which the best results of estimations were obtained. Table 8 
contains the mean computing times for the PC computer with a CPU frequency of 
2×1.73GHz. According to expectations, the fastest method is ROT, practically the time of 
computation is independent from the type of kernel. The computation times for the LCV 
method are significantly longer with exception for the combination of this method with the 
Epanachnikov kernel. The double increase of the sample size leads to a double increase of the 
computation time for the ROT method and a quadruple increase for the LCV method in 
combination with the Epanachnikov kernel.   

 
 
 



4. Concluding remarks 
 
The choice of kernel is determined by the subsequent factors: the numerical complexity, 

differentiability, integrability. Hence, in kernel estimate applications the normal kernel is 
generally used and the inaccuracy is compensated with the sample size increase. The 
advantages of the normal kernel are as following: low numerical complexity and the 
possibility to determine the differential of any order, which is of great importance for the 
determination of other characteristics of the distribution, e.g. the quantile or the cumulative 
distribution function. 

The simulation results indicate that the approximate method of estimation – ROT is as well 
accurate as the LCV method for the estimates of unimodal distributions. Moreover, the CPU 
power load for this method is at a very low level, thus the quality of the estimate can be 
significantly improved by increasing the sample size. 

The study presented in this paper is a part of the work of the authors on applying the kernel 
estimation in the exploratory data analysis of the measuring signals observed in the 
underwater environment. There is no trivial solution for the choice of the optimal kernel 
estimator parameters for the specific application. The presented results of numerical 
experiments are useful for users who face the problem of the kernel function choice and the 
adjustment of its parameters. 
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Fig. 5. The curves of the theoretical normal distribution and the kernel estimate for the Epanachnikov 

kernel 
a) HSJM; b) LCV; c) LOCAL; d) ROT. 

 

 

 

Table 2. Indicators of curve accordance for the  Epanachnikov kernel. 
 

 HSJM LCV LOCAL ROT 
MSE 8.28×10-4 8.29×10-4 0.0020 7.91×10-4 
VAR 6.00×10-4 6.03×10-4 0.0018 5.63×10-4 
MSEo

t=0.2 0.0013 8.64×10-4 0.0054 9.57×10-4 
VARo

t=0.2 0.0012 8.65×10-4 0.0052 9.57×10-4 
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Fig. 6. The curves of the theoretical normal distribution and the kernel estimate for the Gauss kernel 
a) HSJM; b) LCV; c) LOCAL; d) ROT. 

 
 
 
 
 
 
 

Table 3. Indicators of curve accordance for the  Gauss kernel 
 

 HSJM LCV LOCAL ROT 
MSE 9.17×10-4 8.21×10-4 0.0017 7.93×10-4 
VAR 6.89×10-4 5.95×10-4 0.0014 5.66×10-4 
MSEo

p=0.2 0.0015 8.69×10-4 0.0042 9.85×10-4 
VARo

p=0.2 0.0014 8.68×10-4 0.0040 9.51×10-4 
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Fig. 7. The curves of the theoretical normal distribution and the kernel estimate for the Laplace kernel 
a) HSJM; b) LCV; c) LOCAL; d) ROT. 

 
 
 
 
 
 

Table 4. Indicators of curve accordance for the Laplace kernel. 
 

 HSJM LCV LOCAL ROT 
MSE 8.79×10-4 8.26×10-4 0.0015 8.14×10-4 
VAR 6.51×10-4 6.00×10-4 0.0012 5.87×10-4 
MSEo

t=0.2 0.0014 9.16×10-4 0.0037 0.0010 
VARo

t=0.2 0.0013 9.13×10-4 0.0034 9.89×10-4 
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Fig. 8. The curves of the estimates using the Epanachnikov kernel; sample sizes: 

 a) 128; b) 256; c) 512; d) 1024. 
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Fig. 9. The curves of the estimates using the Gauss kernel; sample sizes: 

 a) 128; b) 256; c) 512; d) 1024. 
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Fig. 10. The curves of the estimates using the Laplace kernel; sample sizes: 

 a) 128; b) 256; c) 512; d) 1024. 



Table 5. The comparison of the curve accordance indicators for the Epanachnikov kernel. 
 

Sample size 128 
 HSJM LCV LOCAL ROT 
MSE 0.0030 0.0027 0.0096 0.0027 
VAR 0.0018 0.0015 0.0085 0.0015 
MSEo

t=0.2 0.0013 6.65×10-4 0.0140 6.27×10-4 
VARo

t=0.2 0.0011 6.53×10-4 0.0143 5.98×10-4 
Sample size 256 

 HSJM LCV LOCAL ROT 
MSE 0.0025 0.0017 0.0056 0.0017 
VAR 0.0014 6.58×10-4 0.0047 6.81×10-4 
MSEo

t=0.2 0.0030 5.45×10-4 0.0153 6.51×10-4 
VARo

t=0.2 0.0026 2.72×10-4 0.0146 3.56×10-4 
Sample size 512 

 HSJM LCV LOCAL ROT 
MSE 0.0013 0.0014 0.0029 0.0013 
VAR 7.03×10-4 8.48×10-4 0.0023 7.65×10-4 
MSEo

t=0.2 7.07×10-4 6.35×10-4 0.0053 6.28×10-4 
VARo

t=0.2 4.82×10-4 6.20×10-4 0.0050 5.49×10-4 
Sample size 1024 

 HSJM LCV LOCAL ROT 
MSE 8.28×10-4 8.29×10-4 0.0020 7.91×10-4 
VAR 6.00×10-4 6.03×10-4 0.0018 5.63×10-4 
MSEo

t=0.2 0.0013 8.64×10-4 0.0054 9.57×10-4 
VARo

t=0.2 0.0012 8.65×10-4 0.0052 9.57×10-4 
Sample size 2048 

 HSJM LCV LOCAL ROT 
MSE 4.74×10-4 4.51×10-4 0.0016 4.54×10-4 
VAR 3.56×10-4 3.33×10-4 0.0015 3.36×10-4 
MSEo

t=0.2 7.08×10-4 6.39×10-4 0.0042 6.33×10-4 
VARo

t=0.2 6.38×10-4 6.09×10-4 0.0041 6.11×10-4 
Sample size 4096 

 HSJM LCV LOCAL ROT 
MSE 4.77×10-4 4.17×10-4 0.0011 4.25×10-4 
VAR 4.45×10-4 3.86×10-4 0.0011 3.93×10-4 
MSEo

t=0.2 0.0010 9.16×10-4 0.0029 9.26×10-4 
VARo

t=0.2 9.43×10-4 7.53×10-4 0.0029 7.86×10-4 
 

 
 
 
 
 
 
 
 
 
 
 



Table 6. The comparison of the curve accordance indicators for the Gauss kernel. 
 

Sample size 128 
 HSJM LCV LOCAL ROT 
MSE 0.0038 0.0028 0.0080 0.0027 
VAR 0.0026 0.0017 0.0069 0.0016 
MSEo

t=0.2 0.0027 6.83×10-4 0.0101 6.09×10-4 
VARo

t=0.2 0.0026 7.00×10-4 0.0102 5.97×10-4 
Sample size 256 

 HSJM LCV LOCAL ROT 
MSE 0.0033 0.0018 0.0051 0.0018 
VAR 0.0022 6.91×10-

4 
0.0041 7.44×10-

4 
MSEo

t=0.2 0.0054 5.36×10-4 0.0137 8.07×10-4 
VARo

t=0.2 0.0049 3.19×10-4 0.0130 5.35×10-4 
Sample size 512 

 HSJM LCV LOCAL ROT 
MSE 0.0015 0.0014 0.0025 0.0013 
VAR 9.08×10-4 8.52×10-4 0.0020 7.63×10-4 
MSEo

t=0.2 0.0012 6.46×10-4 0.0046 6.21×10-4 
VARo

t=0.2 9.44×10-4 6.34×10-4 0.0042 5.45×10-4 
Sample size 1024 

 HSJM LCV LOCAL ROT 
MSE 9.17×10-4 8.21×10-4 0.0017 7.93×10-4 
VAR 6.89×10-4 5.95×10-4 0.0014 5.66×10-4 
MSEo

t=0.2 0.0015 8.69×10-4 0.0042 9.85×10-4 
VARo

t=0.2 0.0014 8.68×10-4 0.0040 9.51×10-4 
Sample size 2048 

 HSJM LCV LOCAL ROT 
MSE 5.39×10-4 4.54×10-4 0.0013 4.56×10-4 
VAR 4.21×10-4 3.35×10-4 0.0012 3.38×10-4 
MSEo

t=0.2 8.25×10-4 6.35×10-4 0.0032 6.24×10-4 
VARo

t=0.2 7.46×10-4 6.04×10-4 0.0031 6.04×10-4 
Sample size 4096 

 HSJM LCV LOCAL ROT 
MSE 5.18×10-4 4.17×10-4 9.29×10-4 4.26×10-4 
VAR 4.86×10-4 3.85×10-4 8.97×10-4 3.94×10-4 
MSEo

t=0.2 0.0011 9.13×10-4 0.0024 9.25×10-4 
VARo

t=0.2 0.0010 7.47×10-4 0.0023 7.85×10-4 
 

 
 
 
 
 
 
 
 
 
 



 
Table 7. The comparison of the curve accordance indicators for the Laplace kernel. 

 
Sample size 128 

 HSJM LCV LOCAL ROT 
MSE 0.0034 0.0030 0.0063 0.0030 
VAR 0.0022 0.0018 0.0053 0.0018 
MSEo

t=0.2 0.0017 7.06×10-4 0.0086 8.09×10-4 
VARo

t=0.2 0.0016 7.02×10-4 0.0085 8.27×10-4 
Sample size 256 

 HSJM LCV LOCAL ROT 
MSE 0.0028 0.0020 0.0049 0.0020 
VAR 0.0017 9.53×10-4 0.0039 9.75×10-4 
MSEo

t=0.2 0.0039 0.0013 0.0130 0.0014 
VARo

t=0.2 0.0035 0.0011 0.0122 0.0011 
Sample size 512 

 HSJM LCV LOCAL ROT 
MSE 0.0014 0.0014 0.0020 0.0013 
VAR 8.48×10-4 8.29×10-4 0.0015 8.01×10-4 
MSEo

t=0.2 9.64×10-4 6.38×10-4 0.0037 6.56×10-4 
VARo

t=0.2 7.92×10-4 6.12×10-4 0.0032 5.99×10-4 
Sample size 1024 

 HSJM LCV LOCAL ROT 
MSE 8.79×10-4 8.26×10-4 0.0015 8.14×10-4 
VAR 6.51×10-4 6.00×10-4 0.0012 5.87×10-4 
MSEo

t=0.2 0.0014 9.16×10-4 0.0037 0.0010 
VARo

t=0.2 0.0013 9.13×10-4 0.0034 9.89×10-4 
Sample size 2048 

 HSJM LCV LOCAL ROT 
MSE 5.15×10-4 4.73×10-4 0.0012 4.72×10-4 
VAR 3.97×10-4 3.55×10-4 0.0011 3.54×10-4 
MSEo

t=0.2 7.78×10-4 6.66×10-4 0.0029 6.33×10-4 
VARo

t=0.2 7.13×10-4 6.31×10-4 0.0028 6.17×10-4 
Sample size 4096 

 HSJM LCV LOCAL ROT 
MSE 4.93×10-4 4.23×10-4 8.15×10-4 4.33×10-4 
VAR 4.61×10-4 3.92×10-4 7.81×10-4 4.00×10-4 
MSEo

t=0.2 0.0011 9.25×10-4 0.0020 9.37×10-4 
VARo

t=0.2 9.77×10-4 7.58×10-4 0.0020 7.95×10-4 
 
 
 
 
 
 
 
 
 
 
 



 
Table 8. Mean times of the estimates [s]. 

 
128 

 LCV ROT 
Epanechnikov kernel 0.0128 0.0010 
Gauss kernel 0.0558 0.0018 
Laplace kernel 0.0635 0.0010 

256 
 LCV ROT 
Epanechnikov kernel 0.0327 0.0013 
Gauss kernel 0.2041 0.0023 
Laplace kernel 0.2392 0.0013 

512 
 LCV ROT 
Epanechnikov kernel 0.1075 0.0018 
Gauss kernel 0.8059 0.0027 
Laplace kernel 0.9209 0.0019 

1024 
 LCV ROT 
Epanechnikov kernel 0.4091 0.0032 
Gauss kernel 3.0264 0.0049 
Laplace kernel 3.5363 0.0032 

2048 
 LCV ROT 
Epanechnikov kernel 1.3222 0.0062 
Gauss kernel 12.6249 0.0071 
Laplace kernel 13.6975 0.0062 

4096 
 LCV ROT 
Epanechnikov kernel 5.2299 0.0127 
Gauss kernel 48.7009 0.0134 
Laplace kernel 0.0131 0.0131 

 
 

 

 


